Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available April 14, 2026
- 
            Free, publicly-accessible full text available April 25, 2026
- 
            Free, publicly-accessible full text available January 22, 2026
- 
            Free, publicly-accessible full text available November 12, 2025
- 
            Free, publicly-accessible full text available June 10, 2026
- 
            Abstract We combine photometric data from GALEX GR6+7 All-Sky Imaging Survey and Gaia Early Data Release 3 with stellar parameters from the SAGA and PASTEL catalogs to construct high-quality training samples for dwarfs (0.4 < BP − RP < 1.6) and giants (0.6 < BP − RP < 1.6). We apply careful reddening corrections using empirical temperature- and extinction-dependent extinction coefficients. Using the two samples, we establish a relationship between stellar loci (near-ultraviolet (NUV)−BP versus BP − RP colors), metallicity, andMG. For a given BP − RP color, a 1 dex change in [Fe/H] corresponds to an approximately 1 magnitude change in NUV − BP color for solar-type stars. These relationships are employed to estimate metallicities based on NUV − BP, BP − RP, andMG. Thanks to the strong metallicity dependence in the GALEX NUV band, our models enable a typical photometric-metallicity precision of approximatelyσ[Fe/H]= 0.11 dex for dwarfs andσ[Fe/H]= 0.17 dex for giants, with an effective metallicity range extending down to [Fe/H] = −3.0 for dwarfs and [Fe/H] = −4.0 for giants. We also find that the NUV-band-based photometric-metallicity estimate is not as strongly affected by carbon enhancement as previous photometric techniques. With the GALEX and Gaia data, we have estimated metallicities for about 5 million stars across almost the entire sky, including approximately 4.5 million dwarfs and 0.5 million giants. This work demonstrates the potential of the NUV band for estimating photometric metallicities, and sets the groundwork for utilizing the NUV data from space telescopes such as the upcoming Chinese Space Station Telescope.more » « less
- 
            Abstract We search for an optimal filter design for the estimation of stellar metallicity, based on synthetic photometry from Gaia XP spectra convolved with a series of filter-transmission curves defined by different central wavelengths and bandwidths. Unlike previous designs based solely on maximizing metallicity sensitivity, we find that the optimal solution provides a balance between the sensitivity and uncertainty of the spectra. With this optimal filter design, the best precision of metallicity estimates for relatively bright (G∼ 11.5) stars is excellent,σ[Fe/H]= 0.034 dex for FGK dwarf stars, superior to that obtained utilizing custom sensitivity-optimized filters (e.g., SkyMapperv). By selecting hundreds of high-probability member stars of the open cluster M67, our analysis reveals that the intrinsic photometric-metallicity scatter of these cluster members is only 0.036 dex, consistent with this level of precision. Our results clearly demonstrate that the internal precision of photometric-metallicity estimates can be extremely high, even providing the opportunity to perform chemical tagging for very large numbers of field stars in the Milky Way. This experiment shows that it is crucial to take into account uncertainty alongside the sensitivity when designing filters for measuring the stellar metallicity and other parameters.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
